Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Framework oxide materials are well-known for exhibiting not only negative thermal expansion (NTE), but also demonstrating thermal expansion that can be controlled using composition as a tuning parameter. In this work, we study the intrinsic thermal expansion properties of Co2V2O7, which has shown bulk linear NTE, and attempt to understand how substituting Ni2+for Co2+will affect the thermal expansion. The isomorphic solid solution is synthesized through solid-state methods and characterized using x-ray diffraction (XRD), diffuse reflectance spectroscopy, and neutron diffraction. The size difference between Ni2+and Co2+as well as the polyhedral volume of each Co2+metal coordination environment in the crystal structure allows Ni2+to partially be directed toward one crystallographic site over the other. Variable temperature synchrotron XRD data are employed to understand intrinsic thermal expansion. Across the solid solution, no intrinsic NTE is observed at the microscopic level, yet a degree of tunability in the thermal expansion coefficient with Ni substitution is demonstrated. The disparities between the intrinsic and bulk thermal expansion properties suggest that a morphological mechanism may have resulted in NTE in the bulk.more » « less
-
The complete 31 P NMR chemical shift tensors for 22 inorganic phosphates obtained from ab initio computation are found to correspond closely to experimentally obtained parameters. Further improvement was found when structures determined by diffraction were geometry optimized. Besides aiding in spectral assignment, the cases where correspondence is significantly improved upon geometry optimization point to the crystal structures requiring correction.more » « less
-
Abstract Vacancy‐ordered double perovskites are attracting significant attention due to their chemical diversity and interesting optoelectronic properties. With a view to understanding both the optical and magnetic properties of these compounds, two series of RuIVhalides are presented;A2RuCl6andA2RuBr6, whereAis K, NH4, Rb or Cs. We show that the optical properties and spin‐orbit coupling (SOC) behavior can be tuned through changing theAcation and the halide. Within a series, the energy of the ligand‐to‐metal charge transfer increases as the unit cell expands with the largerAcation, and the band gaps are higher for the respective chlorides than for the bromides. The magnetic moments of the systems are temperature dependent due to a non‐magnetic ground state withJeff=0 caused by SOC. Ru‐Xcovalency, and consequently, the delocalization of metald‐electrons, result in systematic trends of the SOC constants due to variations in theAcation and the halide anion.more » « less
An official website of the United States government
